

Buffer Overrun Vulnerability in Servers

Intelop View

Name: Unauthenticated Remote Compromise in MS SQL Server 2000

Systems: Microsoft SQL Server 2000, all Service Packs

Severity: Critical/Very High Risk.

Category: Remote Buffer Overrun Vulnerability

Vendor URL: http://www.microsoft.com/

This article covers the solution to one of the problems mentioned in above URL.

1- Description:

Microsoft's database server SQL Server 2000 exhibits two buffer overrun

vulnerabilities that can be exploited by a remote attacker without ever

having to authenticate to the server. What further exacerbates these issues

is that the attack is channeled over UDP. Whether the SQL Server process

runs in the security context of a domain user or the local SYSTEM account,

successful exploitation of these security holes will mean a total compromise

of the target server and its data.

Details:

SQL Server can be configured to listen for incoming client connections in

several different ways. It can be configured such that clients can use named

pipes over a NetBIOS session (TCP port 139/445) or sockets with clients

connecting to TCP port 1433 or both. Which ever method is used the SQL

Server will always listen on UDP port 1434. This port is designated as the

Microsoft SQL Monitor port and clients will send a message to this port to

dynamically discover how the client should connect to the Server. This

message is a single byte packet, the byte being 0x02.

There are other messages that can be sent to this port and these can be

worked out with simple experimentation.

Stack Based Buffer Overflow

When SQL Server receives a packet on UDP port 1434 with the first byte set

to 0x04, the SQL Monitor thread takes the remaining data in the packet and

attempts to open a registry key using this user supplied information. For example,

by sending \x04\x41\x41\x41\x41 (0x04 followed by 4 upper case 'A's) SQL Server

attempts to open:

HKLM\Software\Microsoft\Microsoft SQL Server\AAAA\MSSQLServer\CurrentVersion

By appending a large number of bytes to the end of this packet, whilst

preparing the string for the registry key to open, a stack based buffer is overflowed

and the saved return address is overwritten. This allows an attacker to gain complete

control of the SQL Server process and its path of execution. By overwriting the saved

return address on the stack with an address that contains a "jmp esp" or "call esp"

instruction, when the vulnerable procedure returns the processor will start executing

code of the attacker's choice. At no stage does the attacker need to authenticate.

Heap Based Buffer Overflow:

When SQL Server receives a packet on UDP port 1434 with the first byte set

to 0x08 followed by an overly long string, followed by a colon character (:) and

number a heap based buffer is overflowed. As this corrupts the structures used to keep

track of the heap an attacker can overwrite any location in memory with 4 bytes of

their own choosing. This can be used to gain remote control of the processes

execution. If the colon and number are missing the SQL Server process access violates

before the heap is corrupted as the code in the SQL Monitor thread fails to handle

exceptions.

For example the code calls the C function strtok(). The strtok() functions looks

for a given token in a string, in this case a colon, and if found returns a pointer to it. If

the colon is missing in the string being searched then no pointer is returned. This is

one of the reasons why the SQL Server process access violates if the colon is missing.

The code does not check to see if a valid pointer has been returned before passing it to

another function call,

atoi():

char *ptr=NULL;

int num=0;

..

ptr = strtok(string,":");

num = atoi(ptr); // ptr is used without being validated

Failure to check return values and handle exceptions leads to the process

dying, leading to a simple Denial of Service attack. That said, in the light of the

overflows, the DoS is the least of the problems.

Network Based Denial of Service

When an SQL Server receives a single byte packet, 0x0A, on UDP port 1434 it

will reply to the sender with 0x0A. A problem arises as SQL Server will respond,

sending a 'ping' response to the source IP address and source port.

This 'ping' is a single byte UDP packet - 0x0A. By spoofing a packet from one SQL

Server, setting the UDP port to 1434, and sending it the second SQL Server, the

second will respond to the first's UDP port 1434. The first will then reply to the

second's UDP port 1434 and so on. This causes a storm of single byte pings between

the two servers. Only when one of the servers is disconnected from the network or its

SQL service is stopped will the storm stop. This is a simple network based DoS,

reminiscent of the echo DoS discussed back in 1996

(http://www.cert.org/advisories/CA-1996-01.html). When in this state, the load on

each SQL Server is raised to c. 40 - 60 % CPU time.

Considerations for protection against these vulnerabilities

Exploitation of these security holes goes over UDP, a connection-less

communications protocol. As such it makes the task of bypassing the protection

offered by a firewall considerably easier. The spoofing of an IP address in a UDP packet

is also considerably easier.

It is trivial for an attacker to send an attack through the firewall, setting the

source IP address to that of the target's DNS Server and the source port to 53. Most

firewalls will allow this packet through as it will look like a response to a query to

resolve a domain name.

It is strongly recommended that a rule be added to each organization's

firewall such that any packet destined for UDP port 1434 on the 'clean' side of the

firewall be dropped and logged. No host, even DNS Servers, should be allowed to send

traffic to this port.

It is also recommend that firewall administrators ensure that any packet

received on the 'dirty' interface with a source IP address set to an address on the clean

side is also dropped and logged.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/

bulletin/MS02-039.asp

